my Mg Dow

P425/2
PURE MATHEMATICS
Paper 2
July/Aug, 2017
3 HOURS

BUSOGA REGION JOINT EXAMINATION BOARD

Uganda Advanced Certificate of Education

MOCK EXAMINATION 2017

APPLIED MATHEMATICS

Paper 2

3 hours

TUESDAY: 07TH/08/2017

MORNING: 9:00AM - 12:00PM

INSTRUCTIONS TO CANDIDATES

Answer all the eight questions in section A and five questions from section B

All working must be shown clearly

Begin each answer on a fresh sheet of paper

In numerical work, take g to be 9.8 ms⁻²

B AOB AIDS

SECTION A (40 MARKS)

- 1. The probabilities that events A and B occur are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If the probability that only one of them occurs is $\frac{5}{12}$, find
 - i) P(A n B)
- ii) $P(\overline{A} n \overline{B})$

(5 marks)

- 2. A particle starts from rest at the origin and moves along the x- axis with acceleration given by $a = (6 2t) \text{ ms}^{-2}$. Find the maximum speed of the particle and the distance travelled upon reaching maximum speed. (5 marks)
- 3. Find the maximum possible error made in the expression

$$6.23 - 3.1 - \frac{2.5 \times 4.1}{5}$$

(5 marks)

4. The table shows the speeds in ms⁻¹ for vehicles crossing a certain bridge

Speed	20 -	30 -	40 -	60 -	80 - 100	
frequency	2	7	20	16	5	

Calculate the

- i) 40th percentile
 - ii) number of vehicles whose speed exceeds the 40th percentile (5 marks)
- 5. A particle of mass 2 kg resting on a rough horizontal plane is pulled by a force of magnitude 11.3 N inclined at an angle of 60° to the horizontal. If the particle does not move, find the minimum value of the coefficient of friction between the particle and the plane (5 marks)
- 6. A function f(x) is such that f(0.9) = 0.226, f(1.0) = 0.242, f(1.1) = 0.218 and f(1.2) = 0.192. Use linear interpolation to find,
 - i) f(1.04)
 - ii) Value of x for which f(x) = 0.25

(5 marks)

- 7. A water pump raises a volume of 1 m3 of water through a vertical height of 4 m in one minute, discharging it at a speed of 20 ms-1. If the density of water is 1000 kgm⁻³, find the power developed by the pump (5 marks)
- 8. A biased coin is twice likely to show a head than a tail. Find the probability of getting
 - i) at least 4 heads

Constitution.

ii) between 2 and 4 tails

(5 marks)

SECTION B(60 MARKS)

- 9. a) A uniformly accelerating body starts with speed u ms-1 and in successive times of t seconds, travels distances n and 2n metres respectively. Show that the acceleration is $\frac{4u^2}{}$ (5 marks)
 - b) A car moving with uniform acceleration in a straight line travels 29 m in the fifth second and a distance 76 m in the sixth second of its motion. Determine the initial velocity and acceleration of the body

(7 marks)

10.a) Use the trapezium rule with 5 strips to estimate

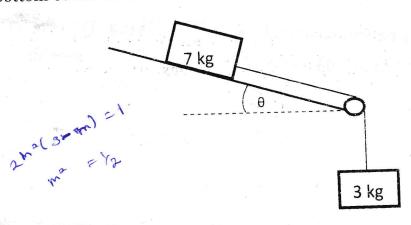
$$\int_{0.5}^{1.5} \left(x^3 + \frac{3}{x}\right) dx$$
 Correct to 4 significant figures.

(6 marks)

b) Find the exact value in the calculation in a) above

(3 marks)

- c) Calculate the relative error in the estimation in a) above and state how (3 marks) you can reduce such a relative error.
- 11. a) The probability that a patient recovers from an illness is 0.9. Find the probability that between 84 and 95 inclusive of the next 100 patients will SEUR XIDOS (5 marks) recover from the illness.


- b) The lengths of nails are normally distributed with mean 50 cm and standard deviation 0.25 cm². Find the length range of the middle 70 % of the nails
- 12. a) By drawing a graph of $y = 2e^x$ and $y = 4 x^2$ on the same axes, show the two real roots of the equation $2e^x + x^2 = 4$ (6 marks) b) Using Newton Raphson formula thrice, find the positive root of the equation $2e^x + x^2 = 4$ (6 marks)
- 1/3. The random variable X has a probability density function given by

$$f(x) = \begin{cases} kx(1-x^2) & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$
 Where k is a constant

- a) Determine the cumulative distribution function F(x) and use it to find
 - i) k
 - ii) Median of X
- b) Calculate the mean of X

(12 marks)

14. In the figure below, a particle A of mass 7 kg rests on a rough plane of inclination θ to the horizontal where $\theta = \tan^{-1}\left(\frac{3}{4}\right)$ and with coefficient of friction 0.6. Particle A is connected to particle B of mass 3 kg hanging freely by means of a light inextensible string passing over a smooth pulley fixed at the bottom of the incline as shown

If the system is released from rest so that A slides downwards, find the

- i) acceleration of the system and the tension in the string
- ii) force on the pulley
- iii) velocity of the 3 kg mass after 2 seconds

(12 marks)

√15. The table below shows the scores in two subjects Maths (X) and Economics (Y) for ten students.

X	82	78,	86	72	91 2	80 ₆	95,	72	893	74 a
Y	75 ₇	80	932	65	873	71 _{&}	98,	68	844	77 ₆

- (a) Plot a scatter diagram and draw the line of best fit. Use your graph to predict the maths score if a student scored 92 in Economics
- (b) Calculate the rank correlation coefficient between X and Y. Comment on the significance of maths on Economics. (Spearman's rank coefficient, $\rho = 0.79$ based on ten students at 1 % level of significance) (12 Marks)
- 16. a) A body of weight 50 N is placed on a smooth plane of inclination $\sin^{-1}\left(\frac{1}{2}\right)$ to the horizontal. Find the size of the horizontal force required to keep the body in equilibrium and the normal reaction (5 marks)
 - b) A light inextensible string of length 170 cm is attached at its ends to two points on the same horizontal level 130 cm apart. The string carries a mass of 2 kg which slides freely on the string. A horizontal force is applied to the mass until the two sections of the string are at right angles. Find the horizontal force and tension in the string. (7 marks)

END